
Compiler Optimization:
Increasing Research Impact

Chris Lattner
LLVM Founder & Architect

CGO 2012 - April 2, 2012

http://llvm.org/

A Disclaimer
• This talk:
– is highly biased by personal experiences and opinions
– plays to broad stereotypes :-)

•Uses code optimization as an example
– focused on traditional static compilation
– focused on open source compilers

•Not intended to be new or novel
– hopefully some tasty food for thought

http://llvm.org/

Roadmap
• Industry vs Academia
•Heroic Optimizations
•Open Problems in LLVM
• Suggestions for the Community

Academia vs Industry

http://llvm.org/

Perspectives on Code Optimization
•How do we speed something up?
•What do we control?

http://llvm.org/

Perspectives - Compiler Academia
•Can’t change the benchmark
– Results on well known benchmarks ⇒ credibility

• Easy (and desirable!) to change the compiler
– Preferably in novel / publishable ways
–Quality threshold: enough to run benchmarks

http://llvm.org/

Perspectives - Industry
• “Hard” to change the compiler
– Compiler engineers are specialized
–Many competing demands
– Compiler needs to be ~100% reliable

• Easy to change the application
– Code changing and evolving rapidly
– Performance tools are a necessity!

http://llvm.org/

Tradeoffs
• Improving the compiler:
– Benefits lots of code
– Expensive

• Improving the application:
–Only helps one application
– Cheap

Motivation, Goals,
Results, and Impact:

Academia

http://llvm.org/

Motivation and Goals
•Motivation:
– Contribution to the field
–Graduate degree, Tenure, ...

•Goal:
– Paper publication
–Novel research contribution
– Build towards large research goals
– Future citations

http://llvm.org/

Result and Impact
•Result:
– “Our optimization speeds up SPECINT2000 by a

geometric mean of 10% compared to our baseline”
–New ideas and algorithms
– Basis of future work

• Impact:
– Achieved goal
–Unclear impact on real-world code
–Optimization never ships in production compiler

Motivation, Goals,
Results, and Impact:

Industry

http://llvm.org/

Motivation and Goals
•Motivation:
– “Video playback on widget X is stuttering!”

•Goal:
– Video decoder runs 25% faster

http://llvm.org/

Result and Impact

•Result:
– 2%: improved modeling of subregister kill flags
– 3%: form FMAs more aggressively with -ffast-math
– 0%: add builtin for “sum of absolute differences”
– 20%: source changes to video decoder

• Impact:
– Achieved goal
– Better video decoder code base
–Modest compiler improvements:
– Broad code benefits
– Composes with future changes
– Product ships on time

Heroic
Optimizations

http://llvm.org/

A random example

“[Our work] improves the performance of
many programs from 5% to 20%, improves
analyzer and llu-bench by roughly 2X, and
ft and chomp more than 10X.”

"Automatic Pool Allocation: Improving Performance by
Controlling Data Structure Layout in the Heap"

Chris Lattner and Vikram Adve
PLDI 2005

http://llvm.org/

What is a heroic optimization?
• Success leads to a dramatic performance effect
– Failure implies no performance change or a loss

•Anything relying on heroic analysis:
– Shape analysis transformations
– Restructuring optimizations for cache
– Auto-parallelization
–Many SPEC hacks :-)

http://llvm.org/

What’s the problem?
•App performance swings wildly as code changes
– Small changes to an app can “break” optimization
– e.g. one new alias introduced
–How does a developer predict or control this?

•Often unrealistic assumptions:
– e.g. requires the “whole program”

•Difficult to justify in production setting
–Hard to qualify correctness
– “Kicks in” in limited situations

http://llvm.org/

When can it make sense?
•Code you can’t (or don’t want to) change
– Benchmark hacks (aka Marketing :-)
– Legacy code - e.g. dusty deck Fortran

•Optimizing common idioms
– Pattern matching loops to memset/memcpy

•Overcoming source language limitations:
– e.g. 1D arrays in Java

http://llvm.org/

Solving the Transparency Problem
• Look to auto-vectorizers for inspiration:
– Report what optimizations happened
– Report why an expected optimization failed

•Hard problems:
–Optimizations happen on IR, not source code
– Some concepts are very abstract!

http://llvm.org/

Better Programming Languages?
•Abstract away details, not algorithmic issues:
–Good: register allocation, inst selection, scheduling
– Bad: cache behavior, vectors vs scalars, parallelism

•Provide abstractions for architecture portability:
– Allow reasoning about memory hierarchy
– Allow expressing intentions of how code is run

•Need to verify that the “right thing” happens

http://llvm.org/

What about Performance Tools?
• Explain how to restructure code for performance
– Instead of automatically fixing it during compilation

•Benefits:
– Communicate to the developer in terms of source code
– Compile time doesn’t matter for off-line tools
– Less fragile as code evolves

•Challenges:
–Need to reimplement most analyses
– Source level is more complex than IR

http://llvm.org/

Other Challenges
•Many people don't want to look at assembly
– higher level way to reason about code execution?
– still need to see what happens after optimization

•Distributed performance problems
– Small slowdown, spread across the entire app
–No hot spot, no obvious way to find the culprit
– Extremely common in C++ and OO apps

Some Open Problems
in LLVM

http://llvm.org/

Instruction Selection for Vector Shuffles

• Shuffles critical for OpenGL / CL and vectorization
– Produce vector from two inputs
– Allows “don’t care” elements in the result

shufflevector %V1, %V2, <i32 3, i32 7, i32 7, i32 4>

#0 #1 #2 #3 #4 #5 #6 #7

%V1 %V2

#3 #7 #7 #4Result =

http://llvm.org/

Instruction Selection for Vector Shuffles

#0 #1 #2 #3 #4 #5 #6 #7

%V1 %V2

#3 #7 #7 #4

 li r8, lo16(LCPI0_0)
 lis r7, ha16(LCPI0_0)
lvx v2, r7, r8
 vperm v2, v4, v3, v2

Constant Pool Load

 vmrglw v3, v3, v2
 vmrglw v3, v3, v3
 vsldoi v2, v3, v2, 4

Better: Three Shuffles

PowerPC Altivec Example

Result =

shufflevector %V1, %V2, <i32 3, i32 7, i32 7, i32 4>

http://llvm.org/

“Perfect” Shuffle
•Precomputed table of shuffles
– 4 Elements: 9*9*9*9=6561 entries * 4 bytes = 26K
– Code generator indexes into table to emit code

%result = vsldoi %tmp1, %V2, 4

 ...
 2297907567U,!// <3,7,7,3>: Cost 3 vmrglw <2,6,3,7>, <3,2,7,3>
 2637729078U, // <3,7,7,4>: Cost 3 vsldoi,4 <3,3,7,7>, V2
 3371649312U,!// <3,7,7,5>: Cost 4 vmrglw <2,6,3,7>, <3,1,7,5>
 ...

%result = shuffle %V1, %V2, <3,7,7,4>

http://llvm.org/

“Perfect” Shuffle
•Precomputed table of shuffles
– 4 Elements: 9*9*9*9=6561 entries * 4 bytes = 26K
– Code generator indexes into table to emit code

%result = vsldoi %tmp1, %V2, 4
%tmp1 = vmrglw %tmp2, %tmp2

 ...
 2297907567U,!// <3,7,7,3>: Cost 3 vmrglw <2,6,3,7>, <3,2,7,3>
 2637729078U, // <3,7,7,4>: Cost 3 vsldoi,4 <3,3,7,7>, V2
 3371649312U,!// <3,7,7,5>: Cost 4 vmrglw <2,6,3,7>, <3,1,7,5>
 ...

 ...
 3371648548U,!// <3,3,7,6>: Cost 4 vmrglw <2,6,3,7>, <2,1,3,6>
 1224165306U, // <3,3,7,7>: Cost 2 vmrglw <2,6,3,7>, <2,6,3,7>
 1224165306U,!// <3,3,7,u>: Cost 2 vmrglw <2,6,3,7>, <2,6,3,7>

%result = shuffle %V1, %V2, <3,7,7,4>

http://llvm.org/

“Perfect” Shuffle
•Precomputed table of shuffles
– 4 Elements: 9*9*9*9=6561 entries * 4 bytes = 26K
– Code generator indexes into table to emit code

%result = vsldoi %tmp1, %V2, 4
%tmp1 = vmrglw %tmp2, %tmp2
%tmp2 = vmrglw %V1, %V2

 ...
 1256575800U,!// <2,6,3,6>: Cost 2 vmrglw V1, <6,6,6,6>
 135056694U, // <2,6,3,7>: Cost 1 vmrglw V1, V2
 135056695U,! // <2,6,3,u>: Cost 1 vmrglw V1, V2

 ...
 2297907567U,!// <3,7,7,3>: Cost 3 vmrglw <2,6,3,7>, <3,2,7,3>
 2637729078U, // <3,7,7,4>: Cost 3 vsldoi,4 <3,3,7,7>, V2
 3371649312U,!// <3,7,7,5>: Cost 4 vmrglw <2,6,3,7>, <3,1,7,5>
 ...

 ...
 3371648548U,!// <3,3,7,6>: Cost 4 vmrglw <2,6,3,7>, <2,1,3,6>
 1224165306U, // <3,3,7,7>: Cost 2 vmrglw <2,6,3,7>, <2,6,3,7>
 1224165306U,!// <3,3,7,u>: Cost 2 vmrglw <2,6,3,7>, <2,6,3,7>

%result = shuffle %V1, %V2, <3,7,7,4>

http://llvm.org/

Perfect Shuffle Problems
•More than 4 elements:
– 8 Elements: 98 table entries = 172MB
– 16 Elements: 916 table entries = 1.8e15 entries

•X86 Code Generation:
–One table per SSE level prohibitive
– Some operations can fold memory loads

• End result:
– A pile of heuristics and hacks

http://llvm.org/

Interprocedural Alias/ModRef Analysis
•Obviously, a very well explored area
•Remains very difficult to use in practice

http://llvm.org/

LLVM AA Challenges
• Don't want to recompute it for every optimization
– Compute once early on, and update it
– ... Optimizations must update Alias Analysis

• Want flexibility for different AA implementations
– Allow easy experimentation
–Willing to limit to flow-insensitivity

http://llvm.org/

LLVM Alias Analysis Needs
•Really need an “Alias Analysis IR API”
– Abstraction between clients and implementations
–Must be efficient (no parallel data structures)

• Should support full generality:
– Alias queries
–Mod/Ref queries
– Pointer capture analysis
– Type-Based alias analysis

Some Suggestions &
Comments

http://llvm.org/

Reproducibility/Believability of Results
•Results vary widely with:
– Target Architecture & Source Language
– Compiler Infrastructure
–Quality of Implementation
– Benchmark set

http://llvm.org/

Reproducibility of Results: Wishlist
•Use a specific version of a well known compiler:
– “LLVM 3.0”, “GCC 4.7”, ”GHC 7.4.1” ...
– Avoids measuring artifacts of an immature foundation

•Measure, measure, measure:
–Dynamic performance, static metrics
– Code size, compile time

•Publish implementation and dataset:
– github link in your paper!
–No need for it to be production quality

http://llvm.org/

Empirical Meta-Comparison Studies
• Solutions to important problems have:
–multiple different algorithms
–many implementation refinements
– different tradeoffs (e.g. analysis time vs quality)

•Need more studies to fairly compare these:
– ideally by third parties
– code and dataset made available for scrutiny
– as apples-to-apples as possible

• Obvious “citation bait”!

http://llvm.org/

Use LLVM!
• LLVM advantages:
–Well known, mature, and robust
–Widely used in both industry and academia
–Modular code base with modern design
– Spans the entire toolchain:
– assembler to compiler, runtime, and debugger

•Other advantages:
–Great basis to measure and share reproducible results
– Blog is a great platform to advertise your work
– LLVM experience is very useful in the job market

http://llvm.org/

Wrap up
• Industry and Academia work differently
–Different goals lead to different results

•Helping humans write better code is useful
– Just as much as doing it automatically in a compiler

• LLVM is a fantastic foundation for research:
–Mature, well known, widely used
– Easy to work with and change
– Lots of hard problems left! Rawr!

